![薄膜晶体管液晶显示(TFT LCD)技术原理与应用](https://wfqqreader-1252317822.image.myqcloud.com/cover/520/47548520/b_47548520.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
1.2.1 三角函数表示法
如图1.11所示,坐标系(x'Oy')与(xOy)的转换矩阵为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_33.jpg?sign=1739692127-MUi1dg62wY1JjYpONaut9VEPPsvL4ehb-0-a8fcfd28232b0c16aeadd138d99ec953)
(1.9)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_34.jpg?sign=1739692127-0opwkiqk1YX3Tqdck7Ecet0td45ycZHB-0-08377d28b72b2e29fa18f98b6da297f5)
图1.11 椭圆偏振光各参数间的关系
而电场矢量在这两个坐标系之间的相互关系为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_35.jpg?sign=1739692127-EzVxjNLXCiLOWBSJgFKADNXtXqBM2FjI-0-58d81ef5d1354aba86653dfdb187b7bb)
(1.10)
设2a和2b分别为椭圆的长轴和短轴,则(x'Oy')坐标系中椭圆的参量方程为
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_36.jpg?sign=1739692127-OVIBgLFeJtvktVbH8TfJYlmiZTv3vMzM-0-9052e3c5fad974236b4ead8ae77b54e1)
(1.11)
式中,正、负号分别对应于右旋和左旋椭圆偏振光。显然,由比值和角度
两参量就可确定椭圆的外形及其在空间的取向,因此它们是椭圆偏振光的两个基本参量,同时也是实际工作中可以直接测量的两个量。下面再求它们和
及其相位差
的关系。为此,利用式(1.11)与式(1.10)的等价性可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_41.jpg?sign=1739692127-U61l2Z9UMLRokTwRhWSTfixDSrpzpW6s-0-6862f64d43ec2555f738e406c53a68c2)
(1.12)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_42.jpg?sign=1739692127-MNpMSRTV4NmfRSuB8gnrsXAaJmGKu90Q-0-75b0f9d5603b3dd7275efb44042e3394)
(1.13)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_43.jpg?sign=1739692127-9GOSNBzKfPkcibnWaYx3GSJ57ktydZgk-0-b486b54300c0fd3a4334c06f9cca453d)
(1.14)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_44.jpg?sign=1739692127-xVeaqPoF7PdI3THyTNyHbh1tL18yV01Q-0-12f7099453fd69a43b5f63ac4a3d4a15)
(1.15)
式(1.12)和式(1.13)平方相加,式(1.14)和式(1.15)平方相加,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_45.jpg?sign=1739692127-kBQzqK6ggZazeRlm57PxEaIPyVTlhec2-0-c6c3bb1600863b9bcca19d1a91d538e3)
(1.16)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_46.jpg?sign=1739692127-C3qbpwIPP6EuUT9RmgFkp0MAQWyQo2NW-0-bc8917069827010825aa4899a13fadf3)
(1.17)
所以
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_47.jpg?sign=1739692127-bCVUeyZyCE6mwpfCegzUXaTpfiYE3cuB-0-df3ee681a21eb1aee59c12f81fc26822)
(1.18)
式(1.12)和式(1.14)相乘,式(1.13)和式(1.15)相乘,然后把两乘积相加,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_48.jpg?sign=1739692127-UecrclZLSXG9w30YPZKMuZiohFsVZhTL-0-b9fbc46fb597469639df8cbd749eb276)
(1.19)
式(1.12)和式(1.14)相除,式(1.13)和式(1.15)相除,可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_49.jpg?sign=1739692127-k21TodKgluYRfGwPdoBlgbcaVo1HmTCZ-0-09b840675e50b441d7fd0c4e282168df)
(1.20)
式(1.20)交叉相乘,则可求出的表达式:
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_51.jpg?sign=1739692127-tpqeAX6MyYCSdCv93rZyPD0WsyaKGnmi-0-22e29db1e1594f8bf225f92c88e273b7)
(1.21)
在实际测量中,比值较之
更为有用,且在计算上也更方便,故令
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_54.jpg?sign=1739692127-6S7P5Z1GaaZ7vRjBVXqvCFDs1QdbewBa-0-482f0d8ba5cd8c953e8b74ba43498088)
(1.22)
于是式(1.21)可简化成
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_55.jpg?sign=1739692127-SUPS5xuvt2DYhTrRBn6jRqFth13RwCRz-0-4eb1bfb87004b8bd478904e00800545b)
(1.23)
而由式(1.18)、式(1.19)可得
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_56.jpg?sign=1739692127-VX0cubt6WmQec0z2PFn8x1v3FIhT6JXz-0-75a6c8040efc29d9c8467fcb17913360)
(1.24)
令
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_57.jpg?sign=1739692127-udXyTYZTV2r4nPKiAQ6cjei7BsZxgQBN-0-386245d8b45374be5ac83ee732eff208)
式中,正、负号分别表示椭圆是右旋还是左旋,于是式(1.24)可改写成
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_58.jpg?sign=1739692127-U96dqkAzeuu4IwDjXCFui3CdclIAKsIw-0-500c4dbc2946a68e56b827bceee94ad9)
(1.25)
由此可见,若测出的实际值,则两偏振光的振幅
及其相位差δ就可由下面的等式求出。
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_61.jpg?sign=1739692127-HOlkwFczLQVQvvKFMg5vsivS4xvAIj15-0-21b352b97f1f7642dbe3daf876f30ecf)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_62.jpg?sign=1739692127-ocSRcP1ydfyDhs63JpZXLj7GAqExFin9-0-b5a7ee58917a924d02d7f609c1621c66)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_63.jpg?sign=1739692127-9Z0ScQx8ubdkiq9hMphk4IPsHhURGSrm-0-509f67c68cbf23359922615313c52d4c)
![img](https://epubservercos.yuewen.com/7691D8/26947309504582306/epubprivate/OEBPS/Images/txt001_64.jpg?sign=1739692127-ghNBekzN02a9xqfcBlMTC3lZaiaY2PJa-0-cf333884af73989e5056f6b27476b735)
(1.26)