![迁移学习算法:应用与实践](https://wfqqreader-1252317822.image.myqcloud.com/cover/428/47755428/b_47755428.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_01.jpg?sign=1739202622-1UtF77JtuvWjaTqPyv4zHcG8jPioMgrM-0-cd5610855270bf9b7672bc72349f406d)
图4.5 表达图像完整与部分信息的示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_02.jpg?sign=1739202622-HVwuL5fYldG3wXv7maXL1CRU0pIhknse-0-cfff4fb3d14905e7a2fce7d12e005cf7)
图4.7 单源领域自适应与多源领域自适应。在单源领域适应中,源领域和目标领域的分布不能很好地匹配,而在多源领域适应中,由于多个源领域之间的分布偏移,匹配所有源领域和目标领域的分布要困难得多[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/3_03.jpg?sign=1739202622-hCFG3glJ2xVUYBOKWGckWhSPSeurDuj1-0-80aeebfea225ad7b44216ced8e77a041)
图4.8 同时对齐分布和分类器的多源自适应方法[71]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_01.jpg?sign=1739202622-ZgZziKMQt1rlqcnETBur53T3nL5x0PD0-0-896a20d7d74787ead96c3ed11e19f67c)
图5.4 领域对抗神经网络可视化结果[64]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/4_02.jpg?sign=1739202622-6tyu7pfSWJ2VyExYC1x3mcT9Biyd8WIh-0-7f60ea9178f72c198fbd50d17d20da1c)
图6.2 关于TrAdaBoost算法思想的一个直观示例
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_01.jpg?sign=1739202622-escLLBeddCJ0pYxs4s0qBQhNrpObfKp1-0-3f6c56d65b7b810a9db94af2328b3aee)
图6.10 基于锚点的集成学习示意图[100]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/5_02.jpg?sign=1739202622-57WZHEK393MxIA8g5k5O5Rd9VpZOOyvi-0-f73a18b13d8e60cc2b4ae801aa0c186d)
图8.9 拆分架构[130]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_01.jpg?sign=1739202622-dEcpiYDPfaBuibTm9HpTlYNQvXZ0UFSZ-0-dbb483fe3afa69b0ac23113e9a0baadf)
图9.4 视图不足假设[136]
![](https://epubservercos.yuewen.com/A97C42/27167652804832906/epubprivate/OEBPS/Images/6_02.jpg?sign=1739202622-ax90T1iuSwMag4vRv2ptvTj3nxvuuP5f-0-c07db19bcf9c4002b4b85e3fd0f747cd)
图10.20 风格迁移示意图[202]