![大展弦比飞行器气动弹性分析的传递函数方法](https://wfqqreader-1252317822.image.myqcloud.com/cover/823/36511823/b_36511823.jpg)
上QQ阅读APP看本书,新人免费读10天
设备和账号都新为新人
2.2 机翼颤振微分方程的建立
2.2.1 机翼单元的弯扭振动方程
长直机翼及其坐标系如图2-1所示,其半展长为l,半弦长为b。取固支端与机翼刚轴的交点为原点建立坐标系,y轴沿机翼轴线从翼根指向翼尖,x轴沿机翼弦向由前缘指向后缘,与y轴正交,z轴与x、y轴构成右手坐标系。在此坐标系下,机翼的弯扭振动微分方程可写为[48]
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-017-1.jpg?sign=1739530107-fYdQEXO4w1CtD0O4B6JtXx0KgOkacEti-0-5b7b7161e6457227b82d43fffc838dc9)
其中,h为机翼弯曲振动位移;α为机翼扭转振动转角;EI为机翼抗弯刚度;GJ为机翼抗扭刚度;m为机翼单位长度质量;Iα为单位长度机翼绕弹性轴的转动惯量;Lh为机翼单位长度的升力;Tα为机翼单位长度的扭矩;y为机翼展向坐标值;t为时间。机翼剖面图如图2-2所示,为机翼弹性轴到z轴的距离,xα为机翼弹性轴到机翼横截面重心的距离。
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-017-3.jpg?sign=1739530107-xx26598D3QFcaBDns0Fi9gmb33p5LHsj-0-8c1aaccb8bb131be3073009b7532726c)
图2-1 长直机翼及其坐标系
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-018-1.jpg?sign=1739530107-mDwKkYoVbtr5JNByYwrTCDhCDQLGRiZX-0-e8283ea28fcc9f9a5c337d2db82eab67)
图2-2 机翼剖面图
2.2.2 非定常气动力模型
在忽略机翼重力影响的条件下,机翼颤振时的外力只有气动力。本书采用片条理论进行非定常气动力计算。根据Theodorson理论,单位展长的非定常升力与相应的俯仰力矩按式(2-2)计算:
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-018-2.jpg?sign=1739530107-BMglLhRLCMBdDBKX3UXIZWYULcJLcykB-0-a48808b8391e29dbc4e263a7694a4f54)
其中,V为空速;ρ为空气密度;C(k)为Theodroson函数;k为减缩频率,k=ωb/V;ω为圆频率;为机翼弹性轴到机翼弦长中点的距离占半弦长的百分比;其他变量说明同式(2-1)。
将式(2-2)代入式(2-1),得到机翼颤振微分方程:
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-018-4.jpg?sign=1739530107-IMQLPaTLJ5qPsImHlbGUyCZNHjzuZJM7-0-ff42652962e9e145231871f05c768a8f)
![](https://epubservercos.yuewen.com/3434AA/19391578301349906/epubprivate/OEBPS/Images/40359-00-019-1.jpg?sign=1739530107-fq9AExz0SCcv5j70Syzhe8t2aB0GUpIL-0-391af4ba30ef3e7843120d438d23b7de)