![孙训方《材料力学》(第5版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】](https://wfqqreader-1252317822.image.myqcloud.com/cover/754/27032754/b_27032754.jpg)
第4章 弯曲应力
一、选择题
1.如图4-1所示,轴AB作匀速转动,等截面斜杆固定于轴AB上,沿斜杆轴线弯矩图可能为( )。[中国矿业大学2009研]
A.一次直线
B.二次曲线
C.三次曲线
D.四次曲线
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image105.jpg?sign=1739356894-DR5MdDNP4lCAMicoWqb52oBh6aDIZeEw-0-1dc885c6c4aa862a836bbc7a3d3e52f1)
图4-1
【答案】C
【解析】设斜杆以角速度ω匀速转动,斜杆的长度为l,横截面面积为A,容重为γ,于是可得距离固定端x的截面处离心力的集度为:
根据弯矩、剪力与荷载集度之间的微分关系:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image107.png?sign=1739356894-mN4zDHh0LMpDRoCadNN2veQxNGfRrJVl-0-dba85cc77317f5daed5aa7f4a106a081)
可知弯矩图应该为关于x的三次曲线。
2.图4-2所示外伸梁横截面为矩形,且宽为高的三倍(b=3h),此时许用荷载[q]=q0。若将该梁截面立放(使高为宽的三倍),则许用荷载变为( )。[北京航空航天大学2005研]
A.[q]=3q0
B.[q]=9q0
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image109.jpg?sign=1739356894-lg1cSZIDdT61Xgn8AJ4rpNWHD6fGe7HD-0-70a7023ee2b08135e82c42a5245890a5)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image110.jpg?sign=1739356894-5dXnRPOgbqCb1elcEUsjCygyq31c4DVo-0-d9330cba8b02a8bdd40d6c048a9f03ee)
图4-2
【答案】A
【解析】假设在x截面处的弯矩最大,根据正应力计算公式可得:
平放时的最大正应力:,许可弯矩:
立放时的最大正应力:,许可弯矩:
又,可知[q]=3q0
3.图4-3所示,矩形截面简支梁承受集中力偶Me,当集中力偶Me在CB段任意移动,AC段各个横截面上的( )。[西北工业大学2005研]
A.最大正应力变化,最大切应力不变
B.最大正应力和最大切应力都变化
C.最大正应力不变,最大切应力变化
D.最大正应力和最大切应力都不变
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image116.jpg?sign=1739356894-B79SUY155KquokTM4gWMSiPIxwmLCrz0-0-3a6f3bae83435a548b1da2e34637a334)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image117.jpg?sign=1739356894-mxxKfgqLpB9aL9OyBOYbwFqyXwgqbz54-0-ac640d7fd914e69474b77e668d2d4bc3)
图4-3 图4-4
【答案】A
【解析】设AB梁长为l,Me距B支座为x,作弯矩图如图4-4(a)所示。
在Me作用下,弯矩突变值为,整个梁上剪力大小相同,如图4-4(b)所示,故最大切应力不变(τmax=
。当x发生变化时,最大弯矩值也发生变化,由
知,最大正应力也将发生变化。
二、计算题
1.一⊥形截面的外伸梁如图4-5所示。已知:l=600mm,a=110mm,b=30mm,c=80mm,F1=24kN,F2=9kN,材料的许用拉应力[σt]=30MPa,许用压应力[σc]=90Mpa。
(1)若C为⊥形截面形心,试求y1与y2的值;
(2)不计弯曲切应力的影响,试校核该梁的强度。[北京科技大学2012研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image121.png?sign=1739356894-zN5TYYS0bpPaPRBzKP8vnMFYIcz6JPhR-0-4ed7152d60cdf7a8f7d924def085c731)
图4-5
答:(1)建立如图4-6所示坐标系。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image122.jpg?sign=1739356894-PXQWdBA4wS10E11TPw2jxooCL0U4IhXj-0-9977d639dabfac3fbf3ea60d82148b27)
图4-6
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image123.png?sign=1739356894-B2RvGRzm4HfWmlbQ8YySGbY0YxYTTlgF-0-9f34bbb28f2427ab03d81f31473f9645)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image124.png?sign=1739356894-VtBtchysGih83CTY73gpRJODeG8HU8CI-0-7b63ad83195284cf7839f29b32448e44)
所以与
值分别为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image127.png?sign=1739356894-v3fNXXVv3YAkOZLLWAtsnmuJ6pNVb5hL-0-15d6f3c642cd0436ad944bf1c179fbb0)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image129.png?sign=1739356894-IOXv8YAfYu8L5v6j6Df70IQnjkfvTvai-0-dc9e729b26d120906eee52f41a9cfa30)
(2)作梁ABD弯矩图,如图4-7所示
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image130.png?sign=1739356894-65ubkImKZG5okIoCY12INUxxIbcYybqq-0-f27301ea8cf83b05b2023920b688cea7)
图4-7(单位KN.m)
在截面E处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image131.png?sign=1739356894-Jx33iO0kQIBIYHaJ4ttFhcMdgzamSh36-0-7b6583b407097b8c2c7d22e4fedc84ca)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image132.png?sign=1739356894-mlvzbghnzkdMbImjxhOYwCw797CEAATY-0-8a0943f8dc2b6d1791222d63e748ecd9)
在截面B处,有
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image133.png?sign=1739356894-xcbs5nwr5SzH2r9am3oHlavf9ntFRHNw-0-4059e581c7bc1af743cd24c73deddefe)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image134.png?sign=1739356894-2EQMRuZkv3zmqcS8k9llH1gix6sFvWh2-0-cbc2ce1b75e592c2650cff3863a793eb)
综上述,梁的强度满足要求。
2.试绘制图4-8所示梁的剪力图和弯矩图。[武汉理工大学2010研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image135.jpg?sign=1739356894-HcCUwiGi5Ar0MPGLBOKtkC4p4E9sQ4xJ-0-9b9e20d90ca79670c0a1f556ac534a8a)
图4-8
解:(1)根据平衡方程求得之支反力:
(2)剪力图和弯矩图分别如图4-9(a)(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image137.png?sign=1739356894-6l2QdJ77ZiSRdmV5PSjRN2mj2uAruwp1-0-2c943ceb512e54e3324fe61d042570cf)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image138.jpg?sign=1739356894-pO7lZEAKNslA0zX0zj0FJrhrTiDY4kfB-0-ce39ec4fd7d4f547d476e2149275fc5d)
(a) (b)
图4-9
3.已知简支梁弯矩方程和弯矩图如图4-10所示。其中:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image139.jpg?sign=1739356894-UqbgYHoajrkTZBJTtnEF0XbECwmmojEE-0-b37bf89a0034d70f04141e03a3904913)
试:(1)画出梁上的载荷;(2)作梁的剪力图。[西安交通大学2005研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image140.jpg?sign=1739356894-zEuBPMTjjAfwr6u3BUI1o8mWbG0JTkEQ-0-3b1ade5d2efcd5f3d7c93d69ab206518)
图4-10
解:根据弯矩、剪力和载荷集度的微分关系,分别对M(x)求一阶、二阶导数,可得到梁的剪力方程和荷载集度:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image141.jpg?sign=1739356894-Nn2JSyr1y0gXP9uYbpFRiQluj2gX2RBp-0-38bcd4b262935ff2727bf947b4e4ac2d)
(1)作载荷图
根据弯矩图可知,在x=0截面上有一正弯矩
根据剪力方程可知:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image144.png?sign=1739356894-wDT6lga9d4hN7T9MMeKiubnqrFrlGsvd-0-2a95acfdfead679206c78e18e8556348)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image145.jpg?sign=1739356894-Uht8cXcImsdyxomvGpmhZoj8XaMwScfX-0-5205802d439b161308f80b63dede27e8)
在截面左侧,剪力等于
,右侧截面剪力等于
,由此可判断在
截面上有向下集中力
的作用。
由弯矩方程的二阶导数可知:
综上,绘制荷载图,如图4-11(a)所示。
(2)作梁的剪力图
根据以上所得梁荷载图绘制剪力Fs图,如图4-11(b)所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image151.jpg?sign=1739356894-BHCDb3Gzozf0s5RD3vYdj5Ht6YNCVxg3-0-b5da4d0186134e15caa9d4970ee40ec6)
(a) (b)
图4-11
4.T形截面梁荷载及尺寸情况如图4-12所示,材料许用拉应力[σt]=30 MPa,许用压应力[σc]=80 MPa。
(1)校核梁的正应力强度条件;(2)计算梁横截面上的最大切应力。[同济大学2001研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image152.jpg?sign=1739356894-ZhdKTa8uIkKtAoPX6KIyWNK2gtwhgwS7-0-8bdc881f9cdbac268731ac734eeb1d83)
图4-12
解:(1)求支座反力作内力图
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image153.jpg?sign=1739356894-qBVJmbfNmNhPh9Qv0bgPPRDP0fbLACXf-0-7c7ff1d86a92ad9ca82c2399d4c56eb5)
梁的剪力图和弯矩图如图4-13所示。
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image156.jpg?sign=1739356894-1gUv6bouQgsK0CCdvPgGZSnJIFJMT6GE-0-726d655eb94fda1d39c201fa2626152a)
图4-13
(2)确定形心
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image157.jpg?sign=1739356894-KWIZo4tDm6CTnxLzqtIaylFB2hDhyLNV-0-7e720f54d3dd0a063fd58a2e631c4aee)
图形对zc轴的惯性矩为:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image158.jpg?sign=1739356894-RAXZYBYPrECOnXYXVUkyrM96YvAFPO8M-0-e15272ba508294a1959c7fee1d08c7a9)
(3)梁上正应力强度校核
在B截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image159.jpg?sign=1739356894-WlRPHVUlKSOcLfmbIssZegGCE8omsadV-0-a7b14db77974eb7a5231239633defc7a)
在D截面上
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image160.jpg?sign=1739356894-qt0i50vevP26Z8GbIi8pfer56xmQ5Pv8-0-4a96ccea7dcc168fee2c26f5196e3dd5)
梁的正应力强度条件满足。
(4)梁横截面上最大切应力
在B左侧截面上有最大剪力:
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image161.jpg?sign=1739356894-iWbcCU2FOD8XPb8SJDUO6m34EvIBymd8-0-2447001fda4153f69da5c6f109be3d51)
故
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image162.jpg?sign=1739356894-BJSA2kTpBHNf49NRXnBFqdfCVeTYK9Lr-0-e9fbcd6f676fdbfe9ae4685cd89f0840)
4.T形等截面悬臂梁受力及尺寸(单位:mm)如图4-14所示。已知Z为梁截面的中性轴,P=16KN,a=2m,材料的许用拉应力[σt]=80MPa,许用压应力[σc]=200MPa。弹性模量E=200GPa。试:
(1)校核梁的正应力强度;
(2)计算梁横截面上的最大切应力。[武汉大学2007研]
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image164.jpg?sign=1739356894-zIgOdReJA567nkD1zrtpWYVJ2VEYUN4g-0-42e371574faf16c1b442f72b7b85597c)
图4-14
解:(1)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image166.png?sign=1739356894-werzepvVjqHV0WHjO4b8CtrYDIXLZaVA-0-d67c87034d862e5a171a495546e31169)
(2)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image167.png?sign=1739356894-nYTkYXVAHNFwTvA8T2ZDgJPp9Aqv3bAN-0-d8c2a93f9e944b763e1b3914e3a759a0)
![](https://epubservercos.yuewen.com/4DEF57/15436380605519206/epubprivate/OEBPS/Images/image168.png?sign=1739356894-n0cyQ61mcQ8SLMOpCPOciPdAjy1cYTDI-0-b296253881f4b1243d1268589ea90c12)