![曾谨言《量子力学教程》(第3版)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/719/27031719/b_27031719.jpg)
1.2 课后习题详解
1.1 设质量为m的粒子在势场V(r)中运动。
(a)证明粒子的能量平均值为,式中
(能量密度)
(b)证明能量守恒公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image043.jpg?sign=1739503028-9vt64IAgC2ZxzzyeAN0lioWT2X7O9QQz-0-a9e44198524d5f7df560d10e4fcb79d0)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image044.jpg?sign=1739503028-rxfzrox77Nqpny23G2su0hWoANQhoqK4-0-eec923103c2780efdfd59478368dce85)
(势能平均值)
(动能平均值)
其中第一项可化为面积分,对于归一化的波函数,可以证明此面积分为零(见《量子力学教程》,18页脚注),所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image049.jpg?sign=1739503028-UPLa6BRnhPMMbALghRUhGkjKJoXh1uJO-0-331c6995b71565e9f962b5755a8ab6e5)
(b)按能量密度W和能流密度s的定义
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image050.jpg?sign=1739503028-Cq1aV6naksmD6hflphp6YvZr726v6sYg-0-e78ffc94d2f131c3e548a006042b5e5b)
因此
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image052.jpg?sign=1739503028-RpPkH0PRQDzZetKfjgEuwAiDI76F5tXQ-0-92a00413a7e5d2ceb6900fef82dc8e52)
1.2 考虑单粒子的Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image053.jpg?sign=1739503028-ke7Gumv9VyTHgad04IzAzeQzdozto5xk-0-b4c18ce78ec0fa3712195cdfa6509a4d)
V1与V2为实函数.
(a)证明粒子的概率(粒子数)不守恒;
(b)证明粒子在空间体积τ内的概率随时间的变化为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image054.jpg?sign=1739503028-4JlMwTmB10E959WRrKBcLHRdtlYLdLLS-0-fb22bce39bff739af42310dbf3d77dd7)
证明:由Schrodinger方程
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image055.jpg?sign=1739503028-4QfwDav3bFP4GYslWZUt0POom5Xwe1KS-0-413be21a51c587b52a5d3fec08a272a1)
取复共轭
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image056.jpg?sign=1739503028-7N23UZ57xw1SJCVBEhWOMm2r7cTJ557i-0-8feb792fc1efd392f99acb33546648db)
得
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image058.jpg?sign=1739503028-ufkXv2UqQU3PQMciSnR70LCrWn9pKtS5-0-1d0dcdaab3727afb445448e1b064f125)
积分,利用Stokes定理
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image059.jpg?sign=1739503028-RgiyiZjiSIO8ku6TBqY5u1WYOwtoxo8j-0-b9afc8f8118b4f88681582d381f4bc42)
对于可归一化波函数,当,上式第一项(面积分)为0,而
,所以
不为0,即粒子数不守恒.
1.3 对于一维自由粒子
(a)设波函数为,试用Hamilton算符
对
运算,验证
;说明动量本征态
是Hamilton量(能量)本征态,能量本征值为
(b)设粒子在初始(t=0)时刻,求
(c)设波函数为,可以看成无穷多个平面波
的叠加,即无穷多个动量本征态
的叠加,试问
是否是能量本征态?
(d)设粒子在t=0时刻,求
.
解:(a)容易计算出
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image077.jpg?sign=1739503028-r2qf1SRUNIwqOTd0wApVpePQ5SxNXh2D-0-d9f2cf0d5c77097436d144d96ec4e74d)
所以动量本征态量(能量)的本征态,能量本征值为
.
(b)其Fourier变换为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image081.jpg?sign=1739503028-JDRVrrEWeI6KQDfNDRy2CiGTAdpOtq89-0-6ed8026021d5f2b3113144aac20e36e2)
由于ψ(x,0)是能量本征态,按《量子力学教程》1.2节,(37)式,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image082.jpg?sign=1739503028-P5aXik8F7SagEVZ9lL7kVaWhm9JRiHhD-0-2b41354c61335b537430e471fe7919ea)
(c)对于自由粒子,动量本征态,亦即能量本征态,由于是无穷多个动量本征态
的叠加,所以
不是能量本征态.
(d)因为,按《量子力学教程》1.2节,(5)式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image087.jpg?sign=1739503028-IxndQxWUoVkybT1RAdNlDuLbwlRVO13f-0-cc55e827cbbd4267e4f2b63ca86b05bb)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image088.jpg?sign=1739503028-oNRcCbdpAgYcb9THph8eBwytGaTQKXLL-0-ff8d64318ea921d4d13e8ddc7a5c5774)
计算中利用了积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image089.jpg?sign=1739503028-GHocsKTavpe1F92fkiNfzkxT2cz5D3J4-0-69ff532d2bae7273aa3037affac0f9e7)
1.4 设一维自由粒子的初态为一个Gauss波包
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image092.jpg?sign=1739503028-hAKObRhQE3ocqIxVHUFLMPxjDlb1DNF6-0-c5a8beee04eeb022974aae7cf56b1020)
(1)证明初始时刻,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image094.jpg?sign=1739503028-bB6BlLv427MBOlXQZTGAdU9BrQyb2y9J-0-fac9512a952160a2df70adf2f872a597)
(2)计算t时刻的波函数
解:(1)初始时刻
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image095.jpg?sign=1739503028-ue44VewfOGP5a7m4Ik9bf1oGkQThvXbR-0-623e2adca108cb5da4a5cd172f4deaa1)
按《量子力学教程》1.2节,(18)式之逆变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image096.jpg?sign=1739503028-dtFKVqkJg3dH1YAQwxi2g2F8F4zISHmp-0-2a3834b13db8c8680d20424c83ffa5c8)
所以
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image097.jpg?sign=1739503028-Y1DrZvoKindRwQj5iqchkv7QdzfaMgSd-0-7f6aaf67af29e602cd02017875ab777c)
(2)按《量子力学教程》1.2节的讨论(见1.2节,(5)式,(18)式)可知,在t>0时的波函数
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image098.jpg?sign=1739503028-zqbaLJx5OGXxl8RYnTbs2ddNIVl60xjL-0-102143bd67cde1c2b7a5a01034fe8e2a)
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image099.jpg?sign=1739503028-8ZfDjWan7N6LNbVsc7ICMh4gPzdPWszh-0-18462d504e04eaa718fc19c38dd625d1)
可见随时间的增加,波包逐渐扩散,振幅逐渐减小,而其宽度△x逐渐增大.
1.5 设一维自由粒子的初态为,证明在足够长时间后,
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image101.jpg?sign=1739503028-yxDh9oVye4SZLWKCMzG4FvOm6edlKvs3-0-40aefd100c8adb2dcc5a3089cd84f2a9)
式中
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image102.jpg?sign=1739503028-fHQciVKiadO7eHltSU1DKPaXSnj7GFIP-0-b25be552673e78e4a0e2a216964bb782)
是ψ(x,0)的Fourier变换
提示:利用
证明:根据自由粒子的动量(能量)本征态随时间变化的规律,式中
所以时刻t的波函数为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image106.jpg?sign=1739503028-FxXjtu3aFDS5V3qnNfn6z3QZr8AmNePu-0-42ec76f453ae48ab20d48a6b7477bf54)
当时间足够长后(t→∞),利用积分公式
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image107.jpg?sign=1739503028-Ou44oB9X9CjRhQUVUXb7HAppLnr2zzRF-0-9c5617377908fddd99cab9cdf20e943b)
上式被积函数中指数函数具有δ函数的性质,即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image108.jpg?sign=1739503028-vRu847rH9MwdYQY4Pd47j0WUCrUGBbaS-0-96b1fd993b3a23a13f3e8e920529d9a7)
1.6 按照粒子密度分布ρ和粒子流密度分布j的表示式(1.2节式(13),(14))
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image109.jpg?sign=1739503028-T2pTrWHrdFBll7sOxdKBRIHBRdk0D9E1-0-311eaf0f2fb245304257a9e5c6fd61c6)
定义粒子的速度分布v
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image110.jpg?sign=1739503028-4kx9BdyfUB9A4Y7dxG4i7f5nZSoxdigs-0-21d02a6bd18ce3f2acd392a4bdeec058)
证明设想v描述一个速度场,则v为一个无旋场.
证明:按照上述v的定义,可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image112.jpg?sign=1739503028-87tE6AVZhMO6n6Y9YFWLYNRMvV6imue2-0-6507c34e8abf492f9808ec594f493c0c)
1.7 处于势场V(r)中的粒子,在坐标表象中的能量本征方程表示成
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image113.jpg?sign=1739503028-3OvgM1g1DEzEtMUMqSDJjMY5tVGSKvAR-0-360cf0c5fce72befc141c7894df076fa)
试在动量表象中写出相应的能量本征方程.
解:利用的Fourier变换
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image115.jpg?sign=1739503028-KVpm61SXBdH1Rpc5AreP27wag7Kgrf2b-0-9eded80f7e812ba486f8c6c2752aea60)
可知
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image116.jpg?sign=1739503028-VnYJwDNzCkgm4dtaVmt29dtrtd1L1dsQ-0-3e772f934aabee4c17a0dc54ee5b9a1f)
即
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image117.jpg?sign=1739503028-SarK63yB5K4r8Esii6T79bV2nBiWgFVP-0-3dee0df3697c61be963b7d5bd6a22431)
所以在动量表象中相应的能量本征方程为
![](https://epubservercos.yuewen.com/23952A/15436364704430206/epubprivate/OEBPS/Images/image118.jpg?sign=1739503028-jSYHTk9XlqF3txqKvoaL7FkaFyFRWpN5-0-d44fc29a3541c851779ec361af65b68c)